Contribution of the spontaneous crossed-phrenic phenomenon to inspiratory tidal volume in spontaneously breathing rats.

نویسندگان

  • Brendan J Dougherty
  • Kun-Ze Lee
  • Michael A Lane
  • Paul J Reier
  • David D Fuller
چکیده

Spinal cord hemisection at C2 (C2HS) severs bulbospinal inputs to ipsilateral phrenic motoneurons causing transient hemidiaphragm paralysis. The spontaneous crossed-phrenic phenomenon (sCPP) describes the spontaneous recovery of ipsilateral phrenic bursting following C2HS. We reasoned that the immediate (next breath) changes in tidal volume (V(T)) induced by ipsilateral phrenicotomy during spontaneous breathing would provide a quantitative measure of the contribution of the sCPP to postinjury V(T). Using this approach, we tested the hypothesis that the sCPP makes more substantial contributions to V(T) when respiratory drive is increased. Pneumotachography was used to measure V(T) in anesthetized, spontaneously breathing adult male rats at intervals following C2HS. A progressive increase in V(T) (ml/breath) occurred over an 8 wk period following C2HS during both poikilocapnic baseline breathing and hypercapnic respiratory challenge (7% inspired CO(2)). The sCPP did not impact baseline breathing at 1-3 days postinjury since V(T) was unchanged after ipsilateral phrenicotomy. However, by 2 wk post-C2HS, baseline phrenicotomy caused a 16 ± 2% decline in V(T); a comparable 16 ± 4% decline occurred at 8 wk. Contrary to our hypothesis, the phrenicotomy-induced declines in V(T) (%) during hypercapnic respiratory stimulation did not differ from the baseline response at any postinjury time point (all P > 0.11). We conclude that by 2 wk post-C2HS the sCPP makes a meaningful contribution to V(T) that is similar across different levels of respiratory drive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiratory motor recovery after unilateral spinal cord injury: eliminating crossed phrenic activity decreases tidal volume and increases contralateral respiratory motor output.

By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was me...

متن کامل

Contribution of various inspiratory muscles to ventilation and the immediate and distant effect of diaphragmatic paralysis.

The contribution of the diaphragm and that of the other inspiratory muscles (scaleni and all the other extradiaphragmatic muscles) at different levels of tidal volume (VT) and during static inspiratory efforts of various strengths has been studied in supine anaesthetized rabbits by blocking phrenic conduction with an electrotonic current. Rabbits spinalized at T1 were used to measure the separa...

متن کامل

Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats.

We tested two hypotheses: 1) that the spontaneous enhancement of phrenic motor output below a C2 spinal hemisection (C2HS) is associated with plasticity in ventrolateral spinal inputs to phrenic motoneurons; and 2) that phrenic motor recovery in anesthetized rats after C2HS correlates with increased capacity to generate inspiratory volume during hypercapnia in unanesthetized rats. At 2 and 4 wk...

متن کامل

Studies on reflex control of breathing in pigs and baboons.

In 8 pigs and 4 baboons, spontaneously breathing, anaesthetized with halothane, Hering-Breuer reflex was tested by means of a total obstruction of the airway preventing either inspiration or expiration. Subsequently animals were paralysed and maintained on phrenic nerve driven servo-respirator. The response of phrenic motoneurone output to various degree of lung inflation, introduced for one br...

متن کامل

Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury.

Spinal hemisection at C2 reveals caudal synaptic pathways that cross the spinal midline (crossed phrenic pathways) and can restore inspiratory activity in ipsilateral phrenic motoneurons. Intermittent hypoxia induces plasticity in the cervical spinal cord, resulting in enhanced inspiratory phrenic motor output. We hypothesized that chronic intermittent hypoxia (CIH) (alternating 11% O(2) and ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 112 1  شماره 

صفحات  -

تاریخ انتشار 2012